Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ

Admin
Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ, bám sát đề thi THPT QG,vận dụng cao

Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ, bám sát đề thi THPT QG,vận dụng cao

Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ Công thức tổng quát tính thể tích của một khối tứ diện bất kì và công thức tính nhanh cho các trường hợp đặc biệt nên nhớ, bám sát đề thi THPT QG,vận dụng cao

THỂ TÍCH KHỐI TỨ DIỆN

Tứ diện ABCD có $BC=a,CA=b,AB=c,AD=d,BD=e,CD=f$ta có công thức tính thể tích của tứ diện theo sáu cạnh như sau:

$V=\frac{1}{12}\sqrt{M+N+P-Q}$,

trong đó

Tứ diện đều cạnh a, ta có \[V=\frac{{{a}^{3}}\sqrt{2}}{12}\].

Tứ diện vuông ( các góc tại một đỉnh của tứ diện là góc vuông).

Với tứ diện \[ABCD\]có \[AB,AC,AD\]đôi một vuông góc và \[AB=a,AC=b,AD=c\], ta có

\[V=\frac{1}{6}abc.\]

Tứ diện gần đều ( các cặp cạnh đối tương ứng bằng nhau)

Với tứ diện  \[ABCD\] có \[AB=CD=a,BC=AD=b,AC=BD=c\], ta có

Từ đó suy ra:

\[AP=\sqrt{2}.\sqrt{-{{a}^{2}}+{{b}^{2}}+{{c}^{2}}},AQ=\sqrt{2}.\sqrt{{{a}^{2}}-{{b}^{2}}+{{c}^{2}}},\text{AR}=\sqrt{2}.\sqrt{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}.\]

Vậy từ \[(*)\] ta suy ra:

\[{{V}_{ABCD}}=\frac{\sqrt{2}}{12}\sqrt{(-{{a}^{2}}+{{b}^{2}}+{{c}^{2}}).({{a}^{2}}-{{b}^{2}}+{{c}^{2}}).({{a}^{2}}+{{b}^{2}}-{{c}^{2}})}.\]

Ngoài ra ta có thể tính thể tích khối tứ diện qua độ dài, khoảng cách và góc giữa cặp cạnh đối diện của tứ diện

Tứ diện \[ABCD\] có

\[AD=a,BC=b,d(AD,BC)=d,(AD,BC)=\alpha ,\] ta có

\[V=\frac{1}{6}abd\sin \alpha .\]

Khối tứ diện biết diện tích hai mặt kề nhau

Xét khối tứ diện \[ABCD\] ta có \[{{S}_{1}}={{S}_{CAB}},{{S}_{2}}={{S}_{DAB}},\alpha =((CAB),(DAB)),AB=a,\]ta có\[V=\frac{2{{S}_{1}}{{S}_{2}}\sin \alpha }{3a}\].

Câu 1. Cho khối tứ diện \[ABCD\]có \[AB=x\],tất cả các cạnh còn lại bằng nhau và bằng \[\sqrt{3}x\]. Tìm \[x\], biết thể tích khối tứ diện đã cho bằng 48(cm3).

A.\[x=2\sqrt{6}\] B. \[x=2\sqrt{2}\] C.\[x=6\sqrt{2}\] D. \[x=2\sqrt{3}\]

 Ta có 

Vậy \[V=\frac{{{(\sqrt{3}x)}^{2}}}{6}\sqrt{1+2\left( \frac{5}{6} \right)\left( \frac{1}{2} \right)\left( \frac{1}{2} \right)-{{\left( \frac{5}{6} \right)}^{2}}-{{\left( \frac{1}{2} \right)}^{2}}-{{\left( \frac{1}{2} \right)}^{2}}}=\frac{{{x}^{3}}}{\sqrt{6}}=48\Leftrightarrow x=2\sqrt{6}.\]

Chọn đáp án A.

Tứ diện có 3 góc cùng xuất phát từ một đỉnh

Tứ diện \[SABC\] có \[SA=a,SB=b,SC=c\] và

\[\angle \text{AS}B=x,\angle BSC=y,\angle CSA=z,\] ta có

\[V=\frac{1}{6}abc\sqrt{1+2\cos x\cos y\operatorname{cosz}-c\text{o}{{\text{s}}^{2}}x-c\text{o}{{\text{s}}^{2}}y-c\text{o}{{\text{s}}^{2}}z}\]

Câu 1. Cho khối tứ diện \[ABCD\] có \[AB=2,AC=3,AD=BC=4,BD=2\sqrt{5},CD=5.\] Tính thể tích \[V\]khối tứ diện \[ABCD\].

  1. \[V=\sqrt{15}.\]              B. \[V=\frac{\sqrt{15}}{2}\]                 C. \[V=\frac{3\sqrt{5}}{2}\]                D. \[V=\frac{9\sqrt{5}}{2}\]

>>Lời giải:

Ta có 

Chọn đáp án A.

Vậy $V=\frac{1}{3}DA.{{S}_{ABC}}=\frac{1}{6}DA.AB.AC.\sin \widehat{BAC}=\frac{1}{6}.4.2.3.\sqrt{1-{{\left( -\frac{1}{4} \right)}^{2}}}=\sqrt{15}.$

Câu 2. Cho khối tứ diện \[ABCD\] có \[AB=5,AC=3,AD=BC=4,BD=4,AD=3\]và \[CD=\frac{12\sqrt{2}}{5}\]. Tính thể tích \[V\]của khối tứ diện \[ABCD\].

  1. \[V=\frac{24}{5}.\]
  2. \[V=\frac{24\sqrt{2}}{5}.\]
  3. \[V=\frac{19}{3}\].
  4. \[V=\frac{19\sqrt{2}}{3}.\]

>>Lời giải:  Để ý

Với \[E\]là trung điểm của cạnh \[CD\]. Vì vậy \[V=\frac{1}{3}{{S}_{ABCD}}.CD.\]

Ta có \[AB=5\], \[E=\sqrt{{{3}^{2}}-{{\left( \frac{6\sqrt{2}}{5} \right)}^{2}}}=\frac{3\sqrt{17}}{5},BE=\sqrt{{{4}^{2}}-{{\left( \frac{6\sqrt{2}}{5} \right)}^{2}}}=\frac{2\sqrt{82}}{5}\Rightarrow {{S}_{ABE}}=3\sqrt{2}.\]

Vậy \[V=\frac{1}{3}.3\sqrt{2}.\frac{12\sqrt{2}}{5}=\frac{24}{5}.\]

Bài viết gợi ý: