CÔNG THỨC TÍNH THỂ TÍCH KHỐI LĂNG TRỤ RẤT HAY - 2023

Khối lăng trụ là gì? Công thức tính khối lăng trụ như vậy nào? Đây là thắc mắc được thật nhiều các bạn học viên quan lại tâm? Vì thế hãy nằm trong Luattriminh.vn theo đuổi dõi nội dung bài viết tiếp sau đây.

Thể tích khối lăng trụ: Công thức và bài xích tập

1. Hình lăng trụ là gì?

Một nhiều giác đem nhì mặt mày lòng tuy vậy song và đều nhau, mặt mày mặt là hình bình hành thì nhiều giác bại liệt gọi là hình lăng trụ.

Bạn đang xem: CÔNG THỨC TÍNH THỂ TÍCH KHỐI LĂNG TRỤ RẤT HAY - 2023

Tên gọi hình lăng trụ

Tên của hình lăng trụ người tao gọi là theo đuổi mặt mày lòng.

Ví dụ:

- Mặt lòng hình tam giác đều thì gọi là hình lăng trụ tam giác đều.

- Mặt lòng hình tứ giác đều thì gọi là hình lăng trụ tứ giác đều.

Hình lăng trụ đứng

Nếu như hình lăng trụ nhưng mà đem những cạnh mặt mày vuông góc với mặt mày lòng thì người tao gọi là hình lăng trụ đứng.

Lưu ý:

- Nếu mặt mày lòng là hình chữ nhật thì hình trụ đứng của tứ giác mang tên gọi không giống là hình vỏ hộp chữ nhật.

- Nếu hình trụ đứng tứ giác đem 12 cạnh đều sở hữu chừng lâu năm là a thì tên thường gọi của chính nó là hình lập phương.

2. Một số dạng lăng trụ

a) Hình lăng trụ đứng: là hình lăng trụ đem cạnh mặt mày vuông góc với lòng. Độ lâu năm cạnh mặt mày được gọi là độ cao của hình lăng trụ. Lúc bại liệt những mặt mày mặt của hình lăng trụ đứng là những hình chữ nhật

b) Hình lăng trụ đều: là hình lăng trụ đứng đem lòng là nhiều giác đều. Các mặt mày mặt của lăng trụ đều là những hình chữ nhật đều nhau. Ví dụ: hình lăng trụ tam giác đều, tứ giác đều... thì tao hiểu là hình lăng trụ đều

c) Hình hộp: Là hình lăng trụ đem lòng là hình bình hành

d) Hình vỏ hộp đứng: là hình lăng trụ đứng đem lòng là hình bình hành

e) Hình vỏ hộp chữ nhật: là hình vỏ hộp đứng đem lòng là hình chữ nhật

f) Hình lăng trụ đứng có lòng là hình vuông vắn và những mặt mày mặt đều là hình vuông vắn được gọi là hình lập phương (hay hình chữ nhật đem tía độ cao thấp đều nhau được gọi là hình lập phương)

Nhận xét:

  • Hình vỏ hộp chữ nhật là hình lăng trụ đứng (Có toàn bộ những mặt mày là hình chữ nhật
  • Hình lập phương là hình lăng trụ đều (tất cả những cạnh vì chưng nhau)
  • Hình vỏ hộp đứng là hình lăng trụ đứng (mặt mặt mày là hình chữ nhật, mặt mày lòng là hình bình hành)

3. Thể tích khối lăng trụ đứng

Công thức tính thể tích hình lăng trụ đứng:

V=S.h

Trong đó:

  • S là diện tích S đáy
  • h là độ cao của khối lăng trụ.

Chú ý: Lăng trụ đều là hình lăng trụ đứng đem lòng là nhiều giác đều.

4. Ví dụ tính thể tích khối lăng trụ

Ví dụ 1:

Cho hình lăng trụ ABC.A’B’C’ đem lòng ABC là tam giác đều cạnh vì chưng a = 2 centimet và độ cao là h = 3 centimet. Hãy tính thể tích hình lăng trụ này?

Giải:

Vì lòng là tam giác đều cạnh a nên diện tích: S_{A B C}=a^2 \cdot \frac{\sqrt{3}}{4}=2^2 \cdot \frac{\sqrt{3}}{4}=\sqrt{3}\left(m^2\right)

Khi này, thể tích hình lăng trụ là:

V=S_{A B C} \cdot h=\sqrt{3} \cdot 3=3 \sqrt{3}\left(m^3\right)

Ví dụ 2:

Cho hình vỏ hộp đứng đem những cạnh AB = 3a, AD = 2a, AA’= 2a. Tính thể tích của khối A’.ACD’

Hướng dẫn:

Do mặt mày mặt ADD’A’ là hình chữ nhật nên tao có:

Xem thêm: 10 quốc gia có diện tích lãnh thổ lớn nhất thế giới

S_{A A^{\prime} D^{\prime}}=\frac{1}{2} S_{A A^{\prime} D^{\prime} D}

V_{A^{\prime} \cdot A C D^{\prime}}=V_{C \cdot A A^{\prime} D^{\prime}}=\frac{1}{2} V_{C \cdot A A^{\prime} D^{\prime} D}

=\frac{1}{2} \cdot \frac{1}{3} V_{A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}}

=\frac{1}{6} \cdot 3 a \cdot 2 a \cdot 2 a=2 a^3

Ví dụ 3: Cho hình lăng trụ đứng ABC.A’B’C’ đem lòng là tam giác đều cạnh a√3, góc đằm thắm và lòng là 60º. Gọi M là trung điểm của BB'. Tính thể tích của khối chóp M.A’B’C’.

Giải:

Do A A^{\prime} \perp(A B C) nên suy ra

\left(\mathrm{A}^{\prime} \mathrm{C},(\mathrm{ABC})\right)=\widehat{A^{\prime} C A}=60^{\circ}

Ta có: A A^{\prime}=A C \cdot \tan \widehat{A^{\prime} C A} =a \sqrt{3} \cdot \tan 60^{\circ}=3 a

S_{A^{\prime B}{ }^{\prime \prime} C^{\prime}}=\frac{(a \sqrt{3})^2 \sqrt{3}}{4}=\frac{3 a^2 \sqrt{3}}{4}

M B^{\prime}=\frac{A A^{\prime}}{2}=\frac{3 a}{2}

\Rightarrow V_{M \cdot A^{\prime} B^{\prime} C^{\prime}}=\frac{1}{3} M B^{\prime} \cdot S_{A^{\prime} B^{\prime} C^{\prime}}=\frac{3 a^2 \sqrt{3}}{8}

Ví dụ 4:

Cho lăng trụ tứ giác đều ABCD.A’B’C’D’ đem cạnh lòng vì chưng a và mặt mày (DBC’) với lòng ABCD một góc 60º. Tính thể tích khối lăng trụ ABCD.A’B’C’D?

Ta có: AC ⊥ BD tại tâm O của hình vuông vắn ABCD.

Mặt khác CC' ⊥ BD do đó BD ⊥ (COC')

Suy ra ((C'BD),(ABCD)) = ∠(C'OD) = 60º

Lại có:

O C=\frac{A C}{2}=\frac{a \sqrt{2}}{2}

\Rightarrow C C^{\prime}=O C \cdot \tan \widehat{C^{\prime} O D} =\frac{a \sqrt{2}}{2} \cdot \tan 60^{\circ}=\frac{a \sqrt{6}}{2}

V_{A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=S_{A B C D} \cdot C C^{\prime}

=a^2 \cdot \frac{a \sqrt{6}}{2}=\frac{a^3 \sqrt{6}}{2}

5. Bài tập dượt thể tích khối lăng trụ

Bài 1. Một bể nước hình trụ đem diện tích S mặt mày lòng B = 2 m2 và đàng cao h = 1 m. Thể tích của bể nước này vì chưng bao nhiêu?

Lời giải

Áp dụng công thức V = B.h = 2.1 = 2 m3.

Bài 2: Cho hình lăng trụ đứng ABC \cdot A^{\prime} B^{\prime} C^{\prime} có lòng là tam giác vuông bên trên B, \mathrm{AB}=\mathrm{a}, \mathrm{BC}=2 \mathrm{a}, \mathrm{AA}^{\prime}=3 \mathrm{a}. Mặt phẳng (\alpha)qua A vuông góc với \mathrm{CA}^{\prime} lần lượt tách những đoạn thẳng \mathrm{CC}^{\prime} và \mathrm{BB}^{\prime} tại M và N. Diện tích tam giác \mathrm{AMN} là

A. \frac{a^{2} \sqrt{14}}{6}

B. \frac{a^{2} \sqrt{14}}{3}

C. \frac{a^{2} \sqrt{14}}{9}

D. \frac{a^{2} \sqrt{14}}{7}

Câu 3: Cho hình lăng trụ tứ giác đều sở hữu toàn bộ những cạnh vì chưng a. Thể tích khối lăng trụ này:

Câu 4 Cho lăng trụ tứ giác đều ABCD.A’B’C’D’ đem cạnh mặt mày vì chưng 4a và đàng chéo cánh 5a. Tính thể tích của khối lăng trụ này là:

Câu 5: Cho lăng trụ đứng ABC. A’B’C’ đem lòng ABC là tam giác vuông bên trên B. AB = 2a, BC = a, AA'=2a\sqrt{3}. Tính theo đuổi a thể tích khối lăng trụ ABC.A’B’C’.

Xem thêm: Hình nền ngầu nữ buồn

Câu 6: Cho hình lăng trụ tam giác đều sở hữu cạnh lòng vì chưng a, diện tích S một phía mặt mày là 2{{a}^{2}}. Thể tích của khối lăng trụ bại liệt là:

Câu 7 Cho hình chóp S.ABCD đem lòng ABCD là hình chữ nhật với AB = a, AD = a\sqrt{2}, SA = a, SA vuông góc với mặt mày phẳng lì lòng. Gọi M, N thứu tự là trung điểm của AD và SC, I là kí thác điểm của BM và AC. Thể tích khối tứ diện ANIB tính theo đuổi a là:

Ngoài rời khỏi nhằm áp dụng chất lượng công thức tính thể tính khối lăng trụ, chúng ta coi thêm bài tập dượt thể tích khối lăng trụ nhé.